Polar Codes for Quantum Key Distribution
نویسنده
چکیده
The polar codes are a class of linear block error-correcting codes transmitted over symmetric binaryinput discrete memoryless channels [1, 2, 3]. As their length N, N = 2n, increases, their performance tends to the Shannon limit. Subsequent publications (e.g., [4, 5]) have addressed practical aspects of the polar codes such as the size length, N, of a polar code that can support a specific feasible performance profile and the impact of the available arithmetic precision on the performance of the polar decoder. As shown in Refs. [6, 7], the polar codes can be used in the reconciliation stage of the quantum key distribution (QKD) protocol. The QKD protocol [8] creates shared secrets by using a quantum channel for “data” that suffers massive deletions (50 % or more) and high bit-error rates (typically between 1 % and 4%, and in theory as high as 11%) and it resolves the bit-value discrepancies through information exchanged over a classical channel that supports data integrity, origin authentication, and protection against replays. The first sound error-correcting protocol to be used by QKD, Cascade [9, 10], is interactive. Cascade went out of fashion because it was believed that it has latency problems. As a result, the use of other, noninteractive decoding schemes, such as the “Low-density parity-check”, LDPC, code [11–13] and polar codes [1–7] were proposed. It should be noted, however, that Cascade is performing a return [14, 15] and there are claims [15] that Cascade currently has no real latency problems. The objective of the QKD protocol’s reconciliation stage is to correct errors in the quantum channel data in such a way that the expected secrecy yield is as high as possible. This translates into maximizing the following:
منابع مشابه
Polar codes in a QKD Environment
Polar coding is the most recent encoding scheme in the quest for error correction codes that approaches the Shannon limit, has a simple structure, and admits fast decoders. As such, it is an interesting candidate for the quantum key distribution (QKD) protocol that normally operates at high bit error rates and requires codes that operate near the Shannon limit. This paper describes approaches t...
متن کاملAn efficient secure channel coding scheme based on polar codes
In this paper, we propose a new framework for joint encryption encoding scheme based on polar codes, namely efficient and secure joint secret key encryption channel coding scheme. The issue of using new coding structure, i.e. polar codes in Rao-Nam (RN) like schemes is addressed. Cryptanalysis methods show that the proposed scheme has an acceptable level of security with a relatively smaller ke...
متن کاملPKC-PC: A Variant of the McEliece Public Key Cryptosystem based on Polar Codes
Polar codes are novel and efficient error correcting codes with low encoding and decoding complexities. These codes have a channel dependent generator matrix which is determined by the code dimension, code length and transmission channel parameters. This paper studies a variant of the McEliece public key cryptosystem based on polar codes, called"PKC-PC". Due to the fact that the structure of po...
متن کاملCodes for Key Generation in Quantum Cryptography
As an alternative to the usual key generation by two-way communication in schemes for quantum cryptography, we consider codes for key generation by one-way communication. We study codes that could be applied to the raw key sequences that are ideally obtained in recently proposed scenarios for quantum key distribution, which can be regarded as communication through symmetric four-letter channels.
متن کاملPolar codes in quantum information theory
Polar codes are the first capacity achieving and efficiently implementable codes for classical communication. Recently they have also been generalized to communication over classical-quantum and quantum channels. In this work we present our recent results for polar coding in quantum information theory, including applications to classical-quantum multiple access channels, interference channels a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017